COMUNICAÇÃO ORAL 12

Mitoxantrone-induced neurotoxicity in CD-1 mice

Ana Dias-Carvalho^{1,2*}, Mariana Ferreira^{1,2,3} Ana Reis-Mendes^{1,2}, Rita Ferreira³, Eduarda Fernandes⁴, Susana Isabel Sá^{5,6}, João Paulo Capela^{1,2,7}, Félix Carvalho^{1,2}, Vera Marisa Costa^{1,2}

Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;

²UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;

³LAQV/REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal;

⁴LAQV/REQUIMTE, University of Porto, Porto, Portugal;

⁵Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal;

⁶CINTESIS@RISE, Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal;

⁷FP-13ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal.

*⊠arcdc97@gmail.com

Doi: https://doi.org/10.51126/revsalus.v4iSup.262

Resumo

Introduction: Mitoxantrone (MTX) is a topoisomerase Il inhibitor used to treat a wide range of tumors and multiple sclerosis [1]. Nevertheless, its brain toxicity is poorly understood. **Objectives:** Evaluation of the underlying neurotoxic mechanisms of a clinically relevant cumulative dose of MTX in the brain of adult male CD-1 mice. Materials and Methods: Three-monthold male CD-1 mice received bi-weekly intraperitoneal administrations of MTX for 3 weeks, to mimic human cycles of chemotherapy, until they reached a total cumulative dose of 6 mg/kg of MTX. They were sacrificed one week later. In the whole brain, biomarkers of oxidative stress, neuronal damage, apoptosis, and autophagy were evaluated. Coronal sections of fixed brains were used for immunofluorescent detection of proteins of neuronal damage in the prefrontal cortex (PFC) and hippocampal formation (HF). In the latter area, volume, and the total number of glial fibrillary acid protein (GFAP)-immunoreactive (ir) astrocytes were determined. Statistical analyses was performed by t-test with Welch's correction. Results: In the whole brain, our results demonstrated that MTX induced redox imbalance. namely: a tendency to decrease the glutathione levels, increase in endothelial nitric oxide synthase and reduced manganese superoxide dismutase expression. Brain metabolism was also altered as seen by diminished adenosine triphosphate synthase subunit β expression. MTX administration also caused increased autophagic protein microtubule-associated protein light chain 3 II and a tendency to decrease p62 expression. Postsynaptic density protein 95 expression decreased. Regarding the regional analysis, a reduction in volume was observed in the dentate gyrus (DG) and CA1 region of the HF. GFAP-ir astrocytes increased in all regions of the HF except in the DG, suggesting extensive astrogliosis. Apoptotic marker Bax increased in the PFC and CA3 regions, whereas p53 decreased in all brain areas evaluated. In the PFC, MTX caused hyperphosphorylation of Tau. Conclusions: MTX causes damage in the brain of adult CD-1 mice in a clinically relevant cumulative dose. There is a need for further studies, as its use is increasing specially among multiple sclerosis patients besides cancer patients.

Keywords: mitoxantrone; neurotoxicity; chemotherapy; chemobrain; brain.

References:

[1] Dias-Carvalho A, Ferreira M, Reis-Mendes A, Ferreira R, Bastos ML, Fernandes E, Sá SI, Capela JP, Carvalho F, Costa VM. Chemobrain: Mitoxantrone-induced oxidative stress, apoptotic and autophagic neuronal death in adult CD-1 mice. Arch Toxicol. Accepted (2022).

Acknowledgments: This work is financed by national funds from Fundação para a Ciência e a Tecnologia (FCT), I.P., in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences (UCIBIO) and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB and through the project EXPL/MEDFAR/0203/2021. A. Dias-Carvalho acknowledges FCT and UCIBIO for her PhD grant (UI/BD/151318/2021). V.M.C acknowledges FCT for her grant (SFRH/BPD/110001/2015) that was funded by national funds through FCT under the Norma Transitória – DL57/2016/CP1334/CT0006. A.R.-M. acknowledges FCT for her grant SFRH/BD/129359/2017.