POSTER 2
Pulmonary tuberculosis in animals from an anatomical point of view

Jessica Gaubert 1†*, Julie Le Guil 1†, Laurie Tireau 1†, Teresa Barroso 1

1TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
†These authors contributed equally to this work.
* a30478@alunos.cespu.pt

Doi: https://doi.org/10.51126/revsalus.v4iSup.269

Resumo
Introduction: Pulmonary tuberculosis is a zoonotic disease caused by the Mycobacterium tuberculosis family of bacteria in dogs, and Mycobacterium bovis in cattle or cats [1]. Animals can be infected by inhaling the infectious agent, often causing respiratory problems, or by bites causing skin granulomas [2]. The disease affects the lungs causing damage and lesions on these organs [2]. Variable clinical signs are observed, such as diarrhea or fever [2]. Thus, it is important to perform diagnostics to confirm that the animal has pulmonary tuberculosis [3]. Objectives: The purpose of this work is to correlate the anatomical features of the lungs with pulmonary tuberculosis in animals. Methods: literature revision. Results: The diagnoses can be antemortem or postmortem [3]. Scientists are still looking for a treatment for pulmonary tuberculosis in animals to avoid euthanasia as much as possible. They are also studying in the search for new, more effective vaccines that can significantly reduce the disease [4]. Being a zoonotic disease, it is important to control and regulate this disease in the world by different epidemiological means, which can be sanitary or medical [4]. Conclusions: It is fundamental for researchers to know the pulmonary anatomy and the different specific variations in animals to succeed in finding potential treatments. Pulmonary tuberculosis is a disease with a high severity rate, especially in animals. Whether for the animal or human population, the awareness of the owners to vaccinate their animals and following the different diagnostic techniques to prevent the disease has a great influence on the control of the disease.

Keywords: pulmonary tuberculosis; zoonosis; animals; lungs; anatomical features.

References:

POSTER 3
Expression of cytokines in the omentum in inflammatory peritoneal processes

Márcio Teodoro da Costa Gaspar 1,2, Manuel Augusto Raimundo dos Santos Rocha 1,2

1TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.
2Clínica Multiperfil – Medical-Surgical Research Center of Angola.
*marcio85gaspar@gmail.com

Doi: https://doi.org/10.51126/revsalus.v4iSup.270

Resumo
Introduction: The peritoneal cavity is the seat of primary or secondary infectious and inflammatory processes. The omentum plays a crucial role in controlling these processes through specific cellular and molecular mechanisms. Objectives: To carry out a bibliographic review of the literature to determine the state of the art on the inflammatory processes that occur in the omentum that lead to the formation of peritoneal blocks. Material and Methods: A bibliographic search was carried out on PubMed with the descriptors omental inflammation in peritoneum. Original
Psilocybin and psilocin as new tools to fight depression: an overview of the pharmacodynamics and pharmacokinetics

Sofia Lemos Martin¨, Andreia Machado Brito-da-Costa†, Áurea Madureira-Carvalho1,2, Ricardo Jorge Dinis-Oliveira1,3,5, Diana Dias da Silva1,4

TOXRUN – Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal.

LAQV-REQUIMTE, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.

Associate Laboratory i4HB - Institute for Health and Bioeconomy, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

UCiBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.

* martins-lemos.sofia@outlook.com

Doi: https://doi.org/10.51126/revsalus.v4iSup.271

Introduction: Psilocybin and psilocin are the main hallucinogenic compounds of the Psilocybe ssp. mushrooms, widely acknowledged as “magic mushrooms”. Preliminary studies with psilocybin show potential for the treatment of obsessive-compulsive disorders, alcohol and tobacco use disorders, major depressive disorder, and treatment of depression in terminal cancer patients [1]. Despite increasing awareness on the therapeutic potential of hallucinogens and revitalized interest in related investigation, their safety and usefulness have been debated and challenged in the medical literature [2]. Objectives: In this review, we compiled the available information on the mechanisms of action and pharmacokinetics (in particular metabolism) of psilocybin and psilocin, with special emphasis on their implications for the therapeutic potential in depression. Materials and Methods: An extensive literature search was carried out in PubMed (U.S. National Library of Medicine) to find the most relevant articles dealing with the pharmacodynamics and pharmacokinetics of psilocybin and psilocin. Results: Psilocybin is believed to have very little biological activity per se, acting primarily as a pro-drug of psilocin. In fact, psilocybin is rapidly activated in vivo by dephosphorylation promoted by alkaline phosphatases, resulting in the production of psilocin, which further undergoes glucuronidation, with the psilocin-O-glucuronide metabolite being the main urinary biomarker of consumption, with relevance in clinical and forensic diagnosis [3]. No CYP450-mediated metabolism was unraveled for psilocybin or psilocin, making these