POSTER 165

Enantioseparation and racemization of MDPV by liquid chromatography

Ana Sofia Almeida^{1,2,3,4}, Fernando Remião^{3,4}, Carla Fernandes^{1,2*}

¹TLaboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

²Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal.

³UCIBIO – Applied Molecular Biosciences Unit, REQUIMTE, laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal.

⁴Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.

Doi: https://doi.org/10.51126/revsalus.v4iSup.432

Resumo

Introduction: Synthetic cathinones are a vast group of new psychoactive substances, similar to amphetamines and widely abused due to their psychostimulant effects [1]. Although they are chiral, few studies report the influence of the stereochemistry in their biological/toxicological properties [2,3]. To study the enantiomers, the development of enantiomeric resolution methods is crucial, being liquid chromatography the technique of choice [4] Furthermore, under certain conditions such as high temperature and acidic/basic environments, pure enantiomers in solution can undergo racemization. Thus, racemization studies are of great importance [5]. Objectives: The aims of this work were the semi-preparative enantiomeric resolution of the synthetic cathinone MDPV along with a racemization study with the collected enantiomers. The potential enantioselectivity of MDPV in neurotoxicity will be further evaluated. Material and methods: The semipreparative enantiomeric resolution and racemization

study were performed by liquid chromatography using polysaccharide-based chiral stationary phases (CSPs). For the racemization study, the enantiomers were exposed to different temperatures (room temperature, 37°C and 70°C) in the presence/absence of diisopropylethylamine for 48 h. Results: The enantiomers of MDPV were separated with a resolution factor (Rs) of 1.7 and selectivity factor (a) of 1.4. The enantiomeric ratio values for the collected enantiomers were >99% for the first enantiomer and 90% for the second with recovery rates of 96% found for both enantiomers. While no racemization occurred after 3 hours for all tested conditions, signs of racemization started to appear for both enantiomers after 48 h at 37°C and after 24 h at 70°C. **Conclusions:** The enantiomers of MDPV were successfully separated with a good resolution and enantioselectivity and collected with high enantiomeric ratio and recovery rates. Racemization starts to occur after 48 h at 37°C and 24 h at 70°C.

Keywords: synthetic cathinones; enantioselectivity; liquid chromatography; racemization

References:

- [1] Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, Carvalho F, Carvalho M. Khat and synthetic cathinones: a review. Arch Toxicol, 88(1):15-45, 2014.
- [2] Silva B, Fernandes C, Tiritan ME, Pinto MM, Valente MJ, Carvalho M, et al. Chiral enantioresolution of cathinone derivatives present in "legal highs", and enantioselectivity evaluation on cytotoxicity of 3,4-methylenedioxypyrovalerone (MDPV). Forensic Toxicol, 34:372-85, 2016.
- [3] Silva B, Silva R, Fernandes C, Guedes de Pinho P, Remião F. Enantioselectivity on the absorption of methylone and pentedrone using Caco-2 cell line: Development and validation of an UHPLC method for cathinones quantification. Toxicol Appl Pharmacol, 395:114970, 2020.
- [4] Silva B, Fernandes C, Guedes de Pinho P, Remião F. Chiral Resolution and Enantioselectivity of Synthetic Cathinones: A Brief Review. J Anal Toxicol, 42(1):17-24, 2018.
- [5] Huang Z, Guo D, Fan J, Zhong Y, Zhang M, He L, et al. HPLC semi-preparative separation of diclazuril enantiomers and racemization in solution. J Sep Sci, 2020:43(7):1240-7.

Acknowledgements: This research was supported by national funds by FCT (UIDB/04423/2020, UIDB/MULTI/04378/2020, UIDP/04423/2020 LA/P/0140/2020, PTDC/CTA-AMB/6686/2020 projects) and BYT-Plus 2021/22 scholarship from CIIMAR and Amadeu Dias Foundation.